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I. INTRODUCTION 
 Wave transformation in the surf zone is the dominant factor in the hydrodynamics of the nearshore 

circulation, and consequent sediment transport. A global description in terms of the spatial variation of such 

quantities such as wave action, wave action flux and wave radiation stress are the driving entities we have used 

to describe the generation by waves of mean currents in the nearshore zone. Studies on the interaction between 

waves and currents span nearly half a century. Mainly driven by a combination of engineering, shipping and 

coastal interests, there has been much research on shoaling nonlinear waves, on how currents affect waves and 

how waves can drive currents. This last aspect is the main concern in this paper. 

 

The basis for this subject was laid down by Longuet-Higgins & Stewart(1960, 1961), who analyzed the 

nonlinear interaction between short waves and long waves (or currents), and showed that variations in the 
energy of the short waves correspond to work done by the long waves against the radiation stress of the short 

waves. In the shoaling zone this radiation stress leads to what are now known as wave setup and wave setdown, 

surf beats, the generation of smaller waves by longer waves, and the steepening of waves on adverse currents, 

see Longuet-Higgins & Stewart (1962, 1964). The divergence of the radiation stress was shown to generate an 

alongshore current by obliquely incident waves on a beach (Longuet-Higgins 1970). 

 

The action of shoaling waves, and wave breaking in the surf zone, in generating a wave-generated 

mean sea-level is well-known and has been extensively studied, see for instance the monographs of Mei (1983) 

and Svendsen (2006). The simplest model is obtained by averaging the oscillatory wave field over the wave 

phase to obtain a set of equations describing the evolution of the mean fields in the shoaling zone based on 

small-amplitude wave theory and then combining these with averaged mass and momentum equations in the 

surf zone, where empirical formulae are used for the breaking waves. These lead to a prediction of steady set-
down in the shoaling zone, and a set-up in the surf zone. This agrees quite well with experiments and 

observations, see Bowen et al (1968) for instance. However, these models assume that the sea bottom is rigid, 

and ignore the possible effects of sand transport by the wave currents, and the wave-generated mean currents. 

Hydrodynamic flow regimes where the mean currents essentially form one or more circulation cells are known 

as rip currents. These form due to forcing by longshore variability in the incident wave field, or the effect of 
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longshore variability in the bottom topography (Kennedy 2003, 2005 ,Yu & Slinn 2003, Yu 2006 and others). 

They are often associated with significant bottom sediment transport, and are dangerous features on many surf 

beaches (Lascody 1998 & Kennedy 2005). 

There is a vast literature on rip current due to wave-current interactions, see the recent works by 

(Horikawa 1978 , Damgaard et al. 2002, Ozkan-Haller & Kirby 2003 ,Yu & Slinn 2003 , Yu 2006, Falques, 

Calvete & Monototo 1998a and Falques et al 1999b, Zhang et al 2004 and others) and the references therein. 

Our purpose in this paper is to extend the wave-current interaction model examined in [5] to the quadratic depth. 

In section 2 we record the usual wave-averaged mean field equations that are commonly used in the 

literature. In section 3 we introduce a description of the rip current formation and examine the consequences for 

both shoaling and surf zones. Then in section 4  we employ section 3  to extend our previous results see 

Osaisai, E. F (2013), now to include the rip currents behavior in a quadratic depth profile. We conclude with a 

discussion in section 5. 

 

II. MATHEMATICAL FORMULATION 
 2.1  Wave field 

 In this section we recall the wave-averaged mean flow and wave action equations that are commonly 

used to describe the near-shore circulation (see Mei 1983 or Svendsen 2006 for instance). We suppose that the 

depth and the mean flow are slowly-varying compared to the waves. Then we define a wave-phase averaging 

operator ff >=< , so that we can express all quantities as a mean field and a wave perturbation, denoted by a 

“tilde” overbar. For instance,  

 .
~

=    (1) 

 where   is the free surface elevation above the undisturbed depth )(= xhh . Then outside the surf zone, the 

representation for slowly-varying, small-amplitude waves is, in standard notation, 

 

 .cos),(
~

 atx :  (2) 

 Here ).(= txaa  is the wave amplitude and ),(= tx  is the phase, such that the wavenumber k , frequency 

  are given by 
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 The local dispersion relation is  
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Here ),( txU  is the slowly-varying depth-averaged mean current (see below), and ),()(=),( txxhtxH  . 

To leading order, the horizontal and vertical components of the wave velocity field are respectively 
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Importantly, note that we have ignored here any reflected wave field, which is assumed to be very 

weak when the bottom topography is slowly varying. The basic equations governing the wave field is then the 

kinematic equation for conservation of waves 
 

 ,0=
t

k  (6) 

 which is obtained from (3) by cross-differentiation, the local dispersion relation (4), and the wave action 

equation for the wave amplitude  

 .0=)( AcA
gt

  (7) 

 Here /= EA , where /2=
2

gaE  is the wave energy per unit mass, and 

)/=(,/==  ddckcUc
ggkg

  is the group velocity. Using the dispersion relation (4) in (6) we 

get  
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 ,= 
exgt

kck  (8) 

 .=
etgt
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 Here the subscript “e” denotes the explicit derivative of ),,( txk  with respect to either x  or t , when the 

wavenumber k  is held fixed. In this water case these explicit derivatives arise through the dependence of   on 

the mean height H  and the mean current U . 

 

2.2  Mean fields 

 The equations governing the mean fields are obtained by averaging the depth-integrated Euler 

equations over the wave phase. Thus the averaged equation for conservation of mass is  

 .0=)( HUH
t

  (10) 

 Here hH =  where )(= xhh  is the time-independent undisturbed depth. For the velocity field we 

proceed in a slightly different way, that is we define  

 ,=
'

uUu   (11) 

 where we define U  so that the mean momentum density is given by  

 ,><== dzuHUM
h



 (12) 

 But now we need to note that 
'

u  does not necessarily have zero mean, and that U  and u  are not necessarily 

the same. Indeed, from (11) and (12) we get that  
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'

 , so that ><
'

u  is )(
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aO  and it follows that, correct to second order in wave amplitude,  
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 The term 
w

M  in (13) is called the wave momentum. 

Next, averaging the depth-integrated horizontal momentum equation yields (Mei 1983)  

 .>)=(<><.=).()( hhzpdzpIuuHUUHU
''

h
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Next an estimate of the bottom pressure term is made by averaging the vertical momentum equation to get  

 .><><.=)(>)=(<
t

hh

dzwdzuwhghzp  




  

For slowly-varying small-amplitude waves, the integral terms on the right-hand side may be neglected, and so 

)(>)=(< hghzp   . Using this in the averaged horizontal momentum equation, and replacing the 

pressure p  with the dynamic pressure )(=  zpq  yields 
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Here S  is the radiation stress tensor. In the absence of any background current, so that U  is )(
2

aO , 

we may use the linearized expressions (2, 5) to find that 
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 where the phase speed  /=c , correct to second order in the wave amplitude. 
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2.3  Shoaling zone 

 These equations hold in the shoaling zone outside the surf zone (defined below). In summary, the 

equations to be solved are that for the conservation of waves (6) combined with the dispersion relation (4), the 

wave action equation (7), the averaged equation for conservation of mass (10) and the averaged equation for 

conservation of horizontal momentum (14), where the radiation stress tensor is given by (16). In this shoaling 

zone, we assume that wave amplitudes are small, and that there is no background current. Then all mean 

quantities are )(
2

aO , and in particular we can systematically replace H  with h  throughout these equations. 

Next we shall suppose that )(= xhh  depends only on the offshore co-ordinate 0>x , where the 

undisturbed shoreline is at 0=x  defined by 0=(0)h . Further, in the near-shore region, including all of the 

surf zone, we shall assume that 0>
x

h . Then we seek steady solutions of the equation set in which all variables 

are independent of the time t , and are also independent of the transverse variable y . It then follows from the 

mean mass equation (10) that HU  is constant, and since 0=H  at the shoreline, it follows that we can set 

0=U  everywhere. Then in the dispersion relation (4) = . From the equation for conservation of waves 

(6) we see that the frequency   and the transverse wavenumber l  are constants, and the the offshore 

wavenumber k  is then determined from the dispersion relation (4). As is well-known, it then follows that as 

0H , || k , that is the waves refract towards the onshore direction, where we assume that the waves 

are propagating towards the shoreline so that 0<k . The wave action equation (7) reduces to 
g

Ec  is constant. 

Near the shore, we can assume that the shallow water approximation holds and then 
1/2

)( ghc
g

 , so that  

 ,
1/2

0

2

0

1/22
haha   (17) 

 where 
0

a  is the wave amplitude at a location offshore where 
0

= hh . The surf zone )(=<,<
bbb

xhhhxx  

can then be defined by the criterion that 
b

h  is that depth where 
cr

Aha =/ , defining an empirical breaking 

condition. A suitable value is 0.44=
cr

A , see Mei (1983) or Svendsen (2006). 

The last step is to find the wave set-up   from the mean momentum equation (14), which here 

becomes  

 ,,0=
xx

gHS   (18) 
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Here   is the angle between the wave direction and the onshore direction, and S  is the “ xx ” component of 

the tensor S . As 0h , /23,0, EScc
g

 , and we recover the well-known result of a wave set-

down in the shoaling zone  

 .
4
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=
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1/2
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2

h

ha

h
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  (19) 

 Here we have assumed that   is zero far offshore. Note that the first expression for   does not need the use 

of the shallow water approximation, as shown by Longuet-Higgins and Stewart (1962).  

 

2.4  Surf zone 

 In the surf zone 
bb

hhxx <<,0<<0 , we make the usual assumption (see Mei (1983) for instance) 

that the breaking wave height a2  is proportional to the total depth H , so that  

 ,
8

=,=2

22
Hg

EorHa


  (20) 

 Here the constant   is determined empirically, and a typical value is 0.88.= . To determine the mean 

height hH = , we again use the mean momentum equation (14), but now assume that 
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/2=/23=
2

gHES   where /83=
2

 , so that  
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 where the constant 
bbb

hH =  is determined by requiring continuity of the total mean height at 
b

xx = . 

Note that using (19)  

 ,/4=
3/21/2

0

2

0 bbb
hhahH   

and since 
b

H  must be positive, there is a restriction on either the deep-water wave amplitude 
0

a  or on the 

breaker depth 
b

h ,  

 ./</4
5/2

0

5/22

0

2

0
hhha

b
 (22) 

 Note that the expression (21) is valid for any depth )( xh , although in the literature it is often derived only for a 

linear depth profile xh = . 

We are now in a position to determine the displaced shoreline 
s

xx = , defined by the condition that 

0=H . That is, if )(=
ss

xhh  then  )/1(=
s

hhH , where  

 ,)(1=
bbs

hh   (23) 

 Note that to use the expression (23) it may be necessary to extend the definition )( xh  into 0<x . For instance 

for a linear beach, xh = , this is straightforward, but for a quadratic beach profile, 
2

= xh  , the extension 

for negative x  should be 
2

= xh   say. Note that from (19),  
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and, on combining this with the condition (22), it follows that the shoreline recedes (advances), that is 
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 This anomalous result does seem only to have been recently noticed [5] [5] and [5]. Since there is an 

expectation that the shoreline should advance (see Dean and Dalrymple (2002) for instance), essentially it states 

that the present model is only valid for sufficiently small waves far offshore, defined by the first inequality in 

(24), which slightly refines the constraint (22). Next we can normalized the generalized bottom profile  

 .1= 
s

hhH  (25) 

 so that it can be written in the form  
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1
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 Thus all the depths profiles we have examined can be plotted as normalized functions. 

 

2.5  Linear depth 

 Now for the linear depth, this is just, for our parameters )//)(1/(1
bsb

xxxx   where  
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and so depends on the wave input 
2

0

2

0
/ha  and the ratio ./

0 b
hh  The normalized plots are shown in 
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figure [1] below. It shows wave height for linear and quadratic beaches. Observe, in linear case the slope is, 

)/(1  , and hence is smaller than the undisturbed slope,  . The plot is a function of 
b

xx /  from 
bs

xx /  to 

1  where we have evaluated 
bs

xx / . Hence the plots depend on these two parameters, and we choose say 

0.1=/
00

ha  and 1/4=/
0

hh
b

 (gives 0<
s

x ), which gives 0.2.=/ 
bs

xx  

 

2.6  Quadratic depth 

 The general bottom depth profile is given by equation (25). Our normalized parameters are 

).)/(/||)(1/(1
22

bsb
xxxxx   Thus equation (27) is the same as that above for the linear depth case, except 

that the left-hand side becomes  

 .
4
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Here the depth is 
2

x  where the sign is for 0<
s

x , or 0>
s

x  which can be written as .|| xx  It follows 

that for the same parameters the right-side is again 0.2 , and so 0.45.=/ 
bs

xx  Figure [1] shows that they 

agree at 0=x  as the expression (25) already shows, but that the linear depth gives a greater setup in 0>x , 

but is weaker in the region 0<x . 
 

 

 
 

Figure  1: Plot of normalized wave height given by equation (25)  for linear and quadratic profiles which 

depends on the ratios 0.1=/
00

ha  and 1/4.=/
0

hh
b

 The values of x  ranges from 1</<0.2
b

xx  for the 

linear depth and 1</<0.45
b

xx  for the quadratic depth profile. Thus the graphs are plotted in the range 

1</<0.45
b

xx . 

  

III. THE GENERAL DESCRIPTION FOR THE RIP CURRENT FORMATION 

 Here we consider a steady-state model driven by an incident wave field which has an imposed 

longshore variability. The wave field satisfies equation (7) which in the present steady-state case reduces to  

 .0=)sin()cos( 
gg

EcyEcx   (28) 

 Here we again assume that )(= xhh  and that consequently the frequency   and the longshore wavenumber 

l  are constants, while the onshore wavenumber K  is then determined from equation (4). We have the wave 

energy E  of the form 
 

 ,)(sin)(cos)(=
000

xGKyxFKyxEE   (29) 

 where the longshore period K/2  is imposed. These equations in the shoaling zone yields  

 0=sin)cos(
00


gxg

cKFcE   (30) 

 0=sin)cos(
00


gxg

cKEcF   (31) 

 0.=)cos(
0 xg
cG   (32) 
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on collecting terms in Kycos , Kysin  and the constant term, which form three equations for 
0

E , 
0

F  

and 
0

G . Equation (32) easily yields that .=cos
0

constantcG
g

  In shallow water, we may approximate by 

putting 
1/2

ghc
g
  and 1cos  , so that then 

1/2

0
/hconstantG  . For the remaining equations we can use 

Snell’s law, 
bbb

cc  =/sin=/sin  (the constant value, here evaluated at the breaker line), and the shallow-

water approximation to get that 

 

 ,0=})/){(
2

0

22

0
cEKccE

bxx
  (33) 

 while although 
0

F  satisfies the same equation, once 
0

E  has been found, then 
0

F  is given by either (30) or 

(31). In practice, 1<<Kc  and so approximately we can assume that constantcFE ),(
00

, the usual 

shallow-water expressions. Note that here ghc  . In the surf zone, the expressions )(),(),(
000

xGxFxE  is 

determined empirically. 

Once the expression (29) has been determined, we may then substitute into the expressions (30,31  & 

32) to obtain the radiation stress fields. Our aim here then is to describe how steady-state rip currents are forced 

by this longshore modulation of the incident wave field, especially in the surf zone. 

The forced two-dimensional shallow water equations that we use here are characteristic of many 
nearshore studies (Horikawa 1978 , Damgaard et al. 2002, Ozkan-Haller & Kirby 2003 ,Yu & Slinn 2003 , Yu 

2006, Falques, Calvete & Monototo 1998a and Falques et al 1999b, Zhang et al 2004 and others). Then, 

omitting the overbars as before, then equations (14) in the present steady-state case reduce to 

   

 ],[=][
x

xHgyUVxUUH    (34) 

 ],[=][
y

yHgyVVxVUH    (35) 

  where the stress terms are defined; 
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Next we observe that equation (10) can be solved using a transport stream function ),( yx , that is  

 ,
1

=
1

= x
H
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H

U    (37) 

 

Next, eliminating the pressure, we get the mean vorticity equation  
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 where   is define as  
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We shall solve this equation (38) in the shoaling zone 
b

xx >  and in the surf zone 
b

xx < , where as 

before 
b

xx =  is the fixed breaker line. It will turn out that the wave forcing occurs only in the surf zone, but 

continuity implies that the currents generated in the surf zone must be continued into the shoaling zone. 

 

3.1  Shoaling zone 

 In 
b

xx >  we shall assume that hH   as   is )(
2

aO . Then we shall use the expressions [30 ,31] 

to evaluate the radiation stress tensor. For simplicity, we shall also use the shallow-water approximation that 

ghcc
g

 , and so we get that  
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These expressions are in principal known at this stage, and so we can proceed to evaluate the forcing 

term on the right-hand side of (38). To assist with this we recall Snell’s law  

 
bb

hh  sin=sin  

where 
b

h  and 
b

  are the water depth and incidence angle at the breaker-line. Now the energy equation (28) has 

the approximate form  

 ,0=)sin()cos(
yx
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and using Snell’s law, this can be written as  
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We can also deduce from (28) that  

 ,0=)sin()cossin(
2
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 .
2

1
=
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We can now evaluate the right-hand side of (38), and find that its identically zero,  

 0.=][][
x

y

y

x

hh


  

Thus in the shoaling zone there is no wave forcing in the mean vorticity equation, although of course there will 

be a mean pressure gradient. However, this does not concern us since here our aim is to find only the flow field. 

Note that the result that there is no wave forcing in the vorticity equation does  not need the specific form (29), 

and is based solely on the steady-state wave energy equation (28). The specific form (29) is only used in the surf 

zone. 

With no forcing term, the vorticity equation (38) can be solved in the compact form, noting that we 

again approximate H  with h ,  

 .)(= F
h


 (41) 

 

But here 0=)(F  from the boundary conditions in the deep water as x , where the flow field 

is zero. Thus our rip current model has zero vorticity in the shoaling zone. It follows that we must solve the 

equation 

 

 0,=)
1

()
1

(=
yyxx
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   (42) 

 

in 
b

xx > . Since )(= xhh  we can seek solutions in the separated form  

 )()(= yYxX  (43) 

 

with the outcome that  
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 We note the separation constant LK /2=
2

  must not be zero, and is in fact chosen to be consistent with the 
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modulation wavenumber of the wave forcing. Without loss of generality, we can choose  

 .sin= KyY  (45) 

 

For each specific choice of )( xh  we must then solve for )( xX  in 
b

xx > , with the boundary 

condition that 0X  as x . We shall give details in the following subsections. Otherwise we complete 

the solution by solving the system (38) in the surf zone, and matching the solutions at the breakerline, 
b

xx =  

where the streamfunction   must be continuous, and in order to have a continuous velocity field we must also 

have that 
x

  is continuous. 

 

3.2  Surf zone 

 To make sense of wave forcing, we assume that the expression (29) holds in this region. The functions 

)(),(),(
000

xGxFxE  are then determined empirically. To determine the wave forcing term in the mean 

vorticity equation (38) we shall assume that 1<<=
b

  so that, on using (??) and (40) we get that  
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Then (38) now becomes, where we again approximate H  with )( xh , 
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where here h/=
~

  is the potential vorticity. Since the wave forcing is given by (29), that is  

 ,)(sin)(cos)(=
000

xGKyxFKyxEE   (47) 

 

we observe that the unmodulated term )(
0

xG  plays no role here at all, although of course it will 

contribute to the wave setup. In order to match at 
b

xx =  with the expression (45) for the streamfunction in the 

shoaling zone, we should try for a solution of (46) of the form  

 .<,)(sin)(=
b

xxinxGKyxF   (48) 

 

The matching conditions for the streamfunction and velocity field at the breakerline 
b

xx =  require 

that  

 .0=)(,0=)=(,)(=)(,)(=)(
bxbbxbxbb
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The expression (48) yields  
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where F
~

 and G
~

 are differential operators where they are defined as;  
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From equation (46) we get a set of three equations that are used to determine the rip-current flow field 

in the surf zone. These are namely;    
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 .0=
)

(
3/2

0

1/2

h

Eh
x  (54) 

  

Equation (54) gives 
1/2

0
1/ hE : , which is an unacceptable singularity as 0h . Hence we must infer 

that in the surf zone at least, 0=
0

E . The first of the three equations, that is (3.2a) suggests that 

  

 ,=

~

onstantwhereCisacCF
h

F
 (55) 

 and the second (3.2b) yields that  
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G
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x
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  (56) 

  

The boundary conditions at 0=x  where 0=h  are that both mass transport fields VU ,  should 

vanish, that is from (37) constant=  and 0=/h
x

 , which implies that  

 .0=,0=,=,0== xat
h

G
constantGFF

x

x
 (57) 

 As above there are also the matching conditions for both F  and G  separately at the breakerline, that is for F  

we have that 

 
b

b

bx
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bx
xxat
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xX

xF

xF
=,

)(

)(
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where we note that here the right-hand side is a known quantity, depending only on K  and 
b

x . Next we see 

that equation (55) reduces to 

 

 ChF
h

FK

h

F

x

x
=)(

2

  (58) 

 

Together with the boundary conditions at 
b

xxx =0,=  this is essentially an eigenvalue problem for 

)( xF  with eigenvalue C . In general it is solved approximately since we shall assume that 1<<
b

Kx . Once 

)( xF  is known we can solve (56), together with the appropriate boundary conditions to get )( xG  to complete 

the solution. 

Note that the amplitude of )( xF  is an arbitrary constant in this solution, and so we can fix it by 

specifying its value at 
b

xx =  say. Indeed the solution we have constructed is essentially a free vortex defined 

by KyxX sin)(  in the shoaling zone 
b

xx > , and KyxF sin)(  in the surf zone 
b

xx < , perturbed by a 

longshore component )( xG  in the surf zone. Note that in the presence of the wave forcing, both GF ,  are 

non-zero, see (56). It is significant that unlike the longshore currents considered in the basic state which depend 

on an  ad hoc frictional parametrization, the presence of the rip current cell combined with the longshore 

modulation in the wave forcing can drive a longshore current. 

 

IV. APPLICATION TO A QUADRATIC DEPTH PROFILE 

 Osaisai, E.F (2013) examined the behavior of the rip-current for the case .= xh   We here extend the 

case for which 
2

= xh  . In the basic state we show that the linear depth gives a greater setup in 0>x , but is 

weaker in the region 0<x , where both depths agreed at 0=x . 
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4.1  Shoaling zone 

 Now we let 
2

= xh   and then equation (44) now admits the differential equation of the form  

 0=)()(2)(
2

xxXKxXxxX
'''

  (59) 

 

whose solutions are explicitly the exponential functions of the form  

 1).(1)(=)(
21




KxeCKxeCxX
KxKx

 

From the behavior of the solutions as x  we see that 0=
1

C  and so  

 .1)(=)(
2




KxeCxX
Kx

 (60) 

 Again note that the constant   does not appear in this solution. 

 

4.2  Surf zone 

 Similarly, let 
2

= xh   in (58), so that proceeding as for Osaisai, E.F (2013) we obtain the equation 

 

 ,=
2 7

0

2
xAFKF

x
F

xxx
  (61) 

 

where now 
2

=  C , and as 0x , 
3

0
xAF  . The solutions of the homogeneous equations are 

known, these are 1)(=
1




Kxej
Kx

 and 1)(=
2

Kxej
Kx

 where 
1

j  and 
2

j  are linearly independent 

solutions. The general solution is given by 

 

 ,)()(=)(
221121

jCjCjxBjxAxF   (62) 

 

where the Wronskian of 
1

j  and 
2

j  is 
23

2= xKW , and  
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Thus A  and B  vanish at 0=x  as 
5

x  and so 
21

= CC . Also the normalization of F  as 0x  gives 

2

01
/23= KAC . 

Now to apply the boundary condition at 
b

xx =  which yields  , we simplify the calculation by first 

approximating A  and B  as above for small x . The outcome is that  

 .)
36

(

9

3

0

x
xAF


  

The boundary condition at 
b

xx =  again yields an explicit equation for   which can be simplified by the 

assumption that 1.<<
b

Kx  Thus   scales as 
6

b
x  which may not be so good an approximation. In spite of 

that the RHS may be approximated by .
22

b
xK  Hence to leading order 

 

 .12=
6


b

x  (63) 

 This leads to the simple expression  
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b
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x
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 and evidently 0
x

F  at 
b

xx = . 

 

 
   

Figure  2: Plot of 
0

)/( AxF  against 
b

xx / , where 
0

A  is arbitrary as given by equation (64). Observe there is no 

dependence on the slope   but only a weak dependence on K . The value of )( xF  also reaches a maximum 

value of 0.7.)/(
0
AxF  This shows that irrespective of ),( xh  the maximum value )( xF  can admit is 

0.7 . 

 

  As in [5] we can now add correction terms, letting /121=
6

b
x  . Expanding A  and B  we find 

that  

 .)
9

2

36

1
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72

1

4

1
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112966443

0
xKxxKxKxAxF    

As before, we now find the leading order term for  ,  

 ./121=
6

b
x   

Finally we get that  

 ).
334

1
(1=)(

5

6

6

6

43

0

bb
x

Kx

x

x
xKxAxF   (65) 

 Next, as before, we need to solve for )( xG  from (56). As above, we approximate 
3

0
= xAF , and also we use 

the empirical expression /8=
22

0
hF  , see equation (20). Thus we get  
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22
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xxx


   (66) 

 

Letting 
3

= xu  we get that  

 .

8

5
=9

3

4

0

22

uA

g
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As before the dominant balance in the particular solution is between 
uu

Z  and the right-hand side, so that 

2/3
uconstantZ

p
 . We find that  
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16

45
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0

222

A

xg
Z

p


 (67) 
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As in the linear depth case, this have the form as 0<   

 .
3

cos
3

sin=
32

u
C

u
CZ

h


  

Here we recall that .=    The total solution is then  

 .=
hp

ZZZ   

The boundary condition at 0=u  gives 0.=
3

C  Again imposing the boundary conditions that 0=Z  at the 

breakerline 
b

xx =  gives, 
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 (68) 

 

Finally we get G  from hZG
x

=  and 0=G  at ,=
b

xx   
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 (69) 

 

 

 
    

Figure  3: Depicts the plots of normalized )( xZ  and )( xG  given by equations (68) and (69) where each is 

normalized by 
0

222
/1645 Axg

b
  and 

0

522
/1645 Axg

b
  respectively with 

0
A  arbitrary. We observe as in 

[5], here too as depicted in the figure, there is a small region of reversed flow near the breaker line. 

  

   

The combined expressions (60, 64, 69) complete the solution, where we recall that the constant C  is 

given by (63) (since 
2

=  C ), or their respective higher-order corrections. Now the amplitude of )( xF  at 

b
xx =  is given by  

 .1)(=)(
2




KxeCxF
Kx

b
 (70) 

 On using the approximation 1<<
b

Kx , and the approximate expression (64), this reduces to  

 .=
3

2
=)(

2

3

0
C

xA
xF

b

b
 

The rip-current system contains a free parameter 
0

A  or its equivalent. We choose to define this free parameter 

to be the value of )(
b

xF  and normalize the full solution by this value. Thus we get from (43, 45) in 
b

xx > , 

and (48, 64, 69) in 
b

xx <  that the normalized streamfunction 
n

  is given by 
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 Here again )((0)/=
b

xFGR  is a free parameter. From (64, 69) we find that here  
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 (73) 

 

Note that again 0<R , and that || R  increases as the wave forcing increases, or as the curvature   

increases, or as the depth 
2

b
x  at the breaker line increases. In order to estimate typical values for R  we again 

note that from (64) the longshore velocity field in the “ )(sin Ky ”-component scales as 
bc

xAV /=
0

, while 

the longshore component then scales with 
c

RV . Taking account of the actual numerical values in the 

expressions given above, we find that a suitable values are 0.1R . Plots of 
n

  are shown in figure [4  & 5 

] for same values of R  as in the linear case, and again 0.2=
b

Kx . 

 
 

    

Figure  4: Plot of the rip current streamlines for a quadratic depth profile, given by equation (72) where )( xF  

and )( xG  are equations (64) and (69) respectively for 0.02= R  in the left panel and 0.1= R  in the right 

panel. 

 

 
   

   Figure  5: As for figure 4 but 0.5= R  in the left panel and 2= R  in the right panel. 

   

Overall these plots show the same kind of behaviour as those for the linear depth profile see [5]. 
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However, the major difference is that the flow in the surf zone is rather weaker, and so the vortex centre is 

slightly further offshore. 

 

V. CONCLUSION 
 We described qualitative solutions for rip currents which are essentially free vortices in both zones. 

The free vortex in the surf zone is perturbed by a longshore modulation in the wave forcing. Rip current cell 

combining with the longshore modulation in the wave forcing can drive longshore currents along the beach. 
Thus the dynamics of the shoaling zone is only dependent on the state-state wave energy equation.The wave 

forcing in the surf zone sets the wave activities different from those of the shoaling zone. To determine wave 

forcing in the mean vorticity equation we assume that the wave angle becomes smaller. We also note here that 

the component of the radiation stress in the y  momentum remains unchanged across the entire flow domain. 

This shows that it is only the x  component of the radiation stress that play a leading role in the wave forcing. 

However, wave forcing encountered in the surf zone has an unmodulated term that does not play a role in the 

vorticity equation but only contribute to wave setup.To ensure continuity of the streamfunctions in the shoaling 

zone we match the solution at the breakerline by a matching condition with appropriate boundary conditions. 

Thus the rip currents solution in the surf zone is provided by the terms in the matching condition. The terms in 

the matching condition has a cross-shore width and a modulated longshore component. The cross-shore width 

was determined by the application of perturbation method and variation of parameter. It would to interesting to 

examine the effect of friction on the rip currents. 
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